eact

Je dld|os

imandos Basicos
Crear un nuevo proyecto de cero.
npm create vite

Seguir los pasos que se muestran.

mponentes
Estructura de un componentes.

export function MyComponent() {
return <hl>Hola Mundo</h1l>;

b

Importante:

Es obligatorio que cada componente regrese siempre un
unico elemento, si se necesita retornar mas de uno, se debe
de envolver en un elemento padre para respetar la regla.

export function MyComponent() {
return (
<div>
<h1>Hola Mundo</h1>
<p>Este es un parrafo</p>
</div>
);
¥

jmentos
Es un elemento que no es renderizado en el DOM y
sirve para agrupar sin afectar la estructura.

import { Fragment } from 'react';

export function MyComponent() {
return (
<Fragment>
<h1>Hola Mundo</h1>
<p>Este es un parrafo</p>
</Fragment>

’

}

Pro Tip:
La forma abreviada del fragmento es esta, y no requiere
importaciones.

export function MyComponent() {
return (
<>
<h1>Hola Mundo</h1>
<p>Este es un parrafo</p>
</>
D
b

1de6

{dev/talles}

Uso de componentes dentro de otros.

function MyComponent() {
return (
<>
<h1l>Hola Mundo</h1>
<p>Este es un parrafo</p>
</>
DE
}

function MyApp() {
return (
<>
<MyComponent />
<MyComponent />
<MyComponent />
</>
);
}

lades de un componente (Props)
Son valores o funciones que se envian al componente,
deben de ser inmutables y permiten la personalizacion.
interface Props {
firstName: string;

’

const Greeting = ({ firstName }: Props) => {
return <hl>Hola, {firstName}!</hl>;

’

// Usando el componente
<Greeting firstName="Fernando" />

Tip:
El cédigo anterior esta en TypeScript, ya que las interfaces no existen
en JavaScript, pero nos ayudan a decir como luce el objeto Props.

Tip 2:
Presta atencion a la desestructuraciéon de argumentos a la funcion y
nombre de la prop al usar el componente.

dren Prop
Es una forma de mandar elementos hijos a un

componente para renderizarlos en otro.
type BoxProps = {
children: React.ReactNode; // <& Este es el
contenido que se coloca dentro del componente
const Box = ({ children }: BoxProps) => {
return (
<div style={{ border: '2px solid blue'}}>
{/* Renderiza lo que se pase dentro del componente */}
{children}
</div>
)k
I

export default Box;

Cursos Yy cupones en] errera.com

http://fernando-herrera.com
https://cursos.devtalles.com/
https://cursos.devtalles.com/

React
3 de atdajos

const App = () => {
return (
<div>
{/* Pasamos elementos como children dentro
del componente Box %/}
<Box>
<h2>Hola Mundo</h2>
<p>Este es un parrafo</p>

</Box>
</div>
’
I
Importante:
Los comentarios dentro del JSX, son expresiones de JavaScript con
su comentario interno, aqui no funciona el <!— —>, porque no es
HTML

lerizacion condiciona
En React, no hay directivas para renderizar
condicionalmente o realizar ciclos, dependen
enteramente de expresiones de JavaScript.
const islLoggedIn = true;
const LoginMessage = () => {
return (
<div>

{/* Renderizado condicional con ternario */}
{isLoggedIn ? (
<h2>Bienvenido de nuevo! #</h2>
)
<h2>Por favor, inicie sesién. @</h2>
)}
</div>
)
ki

Tip:

Hay alternativas para condicionales simples.

// Mostrar solo si isLoggedIn es true
{isLoggedIn && <p>Bienvenido de nuevo! #&</p>}

// Mostrar si no estd logueado
{!isLoggedIn && <p>Por favor, inicie sesidn.</p>}

Es posible tener retornos prematuros para mantener el
cddigo limpio.
type Status = 'loading' | 'error' | 'success';

const MultiReturnConditional = () => {
const status: Status = 'loading';

// Render segun el estado
if (status === 'loading') {
return <p>Cargando... f</p>;

h

if (status === ‘'error') {

return <p>Ups! Algo salidé mal)(</p>;
}

2de6

{dev/talles}

Para usar el componente “Box” creado anteriormente:

if (status === 'success') {
return (
<div>
<h2>Datos cargados correctamente (4</h2>
<p>Aqui estad tu contenido increible!</p>
</div>
D¢
}

// Este return es obligatorio por TypeScript,
aunque nunca se deberia alcanzar
return <p>Status no reconocido</p>;

’

de componentes
Podemos barrer listados en formato de arreglo

utilizando el método .map() de los arreglos y retornar
un JSX en la funcién callback.

const UserList = () => {

// Lista de usuarios

const users = [
{ id: 1, name: 'Fernando' },
{ id: 2, name: 'Melissa' },
{ id: 3, name: 'Natalia' },
13

return (
<div>
<h2>Usuarios</h2>

{users.map((user) => (
<li key={user.id}>
{/* Siempre se recomienda usar una key
tunica, como el ID %/}

9 {user.name}

</1li>
)}

</div>
)3
53
Importante:

Cuando se usa el .map(), siempre debes de colocar el atributo key.

Hooks

Son simples funciones que se definen al inicio del
functional component y permiten acceso a objetos o
funciones dentro del contexto o almacenar estado en
el componente.

import { useState } from 'react';

export const MyCounter = () => {
const [count, setCount] = useState(0);

return (
<div>

<p>Count: {count}</p>
</div>
)3
b

Cursos y cupones en nando-herrera.com

https://react.dev/learn/conditional-rendering
https://react.dev/learn/rendering-lists
http://fernando-herrera.com
https://cursos.devtalles.com/
https://cursos.devtalles.com/

React
Cuia de atajos

Listado de los hooks
Un listado de los hooks propios de React

Basicos
Hooks que encontraras en toda aplicacion de React.

Comando Descripcion

useState Maneja un estado local en el
componente.

useEffect Ejecuta efectos secundarios y
limpieza al desmontar el
componente.

useContext Accede al valor alojado en el
contexto. (arbol de componentes)

Adicionales
Hooks que ofrecen comportamientos adicionales.

Comando ‘ Descripcion

useReducer Alternativa al useState para
l6gica compleja.

useRef Referencias mutables que no
causan re-render.

useMemo Memoriza valores para evitar
volverlos a calcular entre re-
renders.

useCallback Memoriza funciones para evitar
recreaciones innecesarias.

L tEffect Similar al useEffect, pero
sincronizado justo después del
render.

ImperativeHand| Expone métodos desde un
componente con forwardRef

Relacionados al DOM

Hooks orientados a informacion del DOM

Comando ‘ Descripcion

Difiere valores para mejorar el
rendimiento entre re-renders.

useDeferredValue

Permite renderizar partes del Ul
en el background, pueden ser
vistas como actualizaciones no
urgentes.

useTransition

Se ejecuta antes del render
para estilos dinamicos.

uselnsertionEffect

3de6

{dev/1alles}

Ultimos Hooks

Comando

useFormStatus

Descripcion

Lee el estado de un <form>, el
ultimo posteo.

useActionState Actualiza el estado basado en
el resultado de un posteo de
formulario.
1seOptimistic Muestra valores optimistas
antes de que una accion sea
resuelta.
Importante:

Existen otros hooks para casos especificos, pueden encontrar el

listado en React Docs.

Reglas de los Hooks
Estas reglas estan dadas por React y se deben de
respetar si quieres que tu aplicacién funciones como

esperas.

Regla

Siempre llama a los
hooks en el mismo
orden.

Solo usa hooks en
componentes
funcionales o custom
hooks.

Los hooks deben
comenzar con use.

Evita efectos
secundarios innecesarios
en useEffect.

No modifiques el estado
directamente.

Separa logica en hooks
personalizados si se
repite.

Efectos del useEffect
deben de ser atomicos.

Explicacion

No pongas hooks dentro de
condiciones (if), bucles (for,
while) o funciones internas.

No puedes usar hooks dentro
de funciones normales, clases,
condicionales globales.

Si creas un custom hook,
asegurate de llamarlo useAlgo,
por ejemplo: useFetch,
useAuth, etc.

No pongas funciones que
modifiquen estado sin incluirlas
en las dependencias, o se
puede crear un bucle infinito.

Siempre usa setState (como
setCount(newValue)) en lugar
de modificar el estado actual
directamente.

Si tienes ldgica repetida (por
ejemplo, un useEffect que hace
fetch), considera extraerla en
un custom hook para
reutilizarla.

No crees un efecto gigante,
separalo en efectos pequefios
con responsabilidades bien
definidas.

Cursos y cupones en fernando-herrera.com

https://cursos.devtalles.com/
https://cursos.devtalles.com/
http://fernando-herrera.com
https://react.dev/reference/react/hooks
https://react.dev/reference/react-dom/hooks/useFormStatus
https://react.dev/reference/react/useActionState
https://react.dev/reference/react/useOptimistic
https://react.dev/reference/react/useDeferredValue
https://react.dev/reference/react/useTransition
https://react.dev/reference/react/useInsertionEffect
https://react.dev/reference/react/useState
https://react.dev/reference/react/useEffect
https://react.dev/reference/react/useContext
https://react.dev/reference/react/useReducer
https://react.dev/reference/react/useRef
https://react.dev/reference/react/useMemo
https://react.dev/reference/react/useCallback
https://react.dev/reference/react/useLayoutEffect
https://react.dev/reference/react/useImperativeHandle

eact

1€ Ald|0OSs

Es posible separar légica en hooks personalizados
para reutilizarla o bien crear componentes mas limpios.

// Nombre del archivo: useMessage.ts
import { useState } from 'react';

DOKS - HOOKs personalizados

// Hook que maneja un mensaje y permite
actualizarlo
const useMessage = () => {

const [message, setMessage] =
useState<string>(‘Hola Mundo!’);

// Método para cambiar el mensaje
const updateMessage = (newMessage: string) => {
setMessage(newMessage) ;

’

return {
message,
updateMessage,

’

15

export default useMessage;

Consumo del hook personalizado useMessage

const MessageComponent = () => {
const { message, updateMessage } = useMessage();

return (
<div>
<h2>{message}</h2>
<button onClick={() =>
updateMessage(‘Saludos a todos! #7')}>
Change message
</button>
</div>
)3
i

®

t APl - u
“use” no es un hook
Permite leer un valor de un recurso como una promesa
o contexto, suspendiendo la creacién hasta tener una
resolucién. Va de la mano del componente Suspense.

const MyComponent = () => {

w

const message = use(wait(2000)); // Suspende el
componente 2s, luego retorna el mensaje

return <h2>{message}</h2>;

’

Se debe de colocar el <Suspense> component

import { Suspense } from 'react';
import MyComponent from './MyComponent';

export default function App() {
return (
<Suspense fallback={<p>Loading...</p>}>
<MyComponent />
</Suspense>

4de6

{dev/talles}

nente <Suspense>
Permite desplegar un contenido hasta que sus hijos
terminen de cargar.
<Suspense fallback={<Loading />}>

<Albums />
</Suspense>

Importante:
Si hay un Unico suspense, el contenido se mostrara hasta que
todos los hijos resuelvan.

Si se desea una aproximaciéon mas granular, donde los
hijos se muestran tan pronto terminan, se deben de
colocar multiples suspense.
<Suspense fallback={<BigSpinner />}>
<Biography />
<Suspense fallback={<AlbumsGlimmer />}>
<Panel>
<Albums />
</Panel>
</Suspense>
</Suspense>

t compiler

El compilador de React permite optimizaciones de
cbdigo sin necesidad de memorizacidon manual por
parte del desarrollador.

o0 de eventos
Los eventos de los elementos son los mismos que ya
estamos acostumbrados a usar en el DOM tradicional,
pero los nombres son con camelCase.

import { ChangeEvent, FC, MouseEvent, useState } from
'react’';

export const EventExample: FC = () => {
const [nombre, setNombre] = useState<string>('');
const handleInputChange = (event:

ChangeEvent<HTMLInputElement>): void => {
setNombre(event.target.value);

const handleClick = (event:
MouseEvent<HTMLButtonElement>): void => {
console. log(event);
alert('Hola, ${nombre.trim() !== '' ? nombre
‘invitado'}!’);

return (
<>

<h2>8

J

Bienvenido</h2>

<input
type="text"
placeholder="Escribe tu nombre"
value={nombre}
onChange={handleInputChange}
/>

<button onClick={handleClick}>Saludar</button>
</>

Cursos Yy cupones en 1errera.com

https://cursos.devtalles.com/
https://cursos.devtalles.com/
https://react.dev/reference/react/use
https://react.dev/reference/react/Suspense
https://react.dev/learn/react-compiler
http://fernando-herrera.com

‘4
(
{

-
(
N\
l& 4
—
O
| O
~
O
W

Formularios

React no cuenta con componentes propios o
especiales para el manejo de formularios.

import { ChangeEvent, FC, FormEvent, useState } from
‘react’';

export const ContactForm: FC = () => {
// Estados tipados
const [nombre, setNombre] = useState<string>('');
const [email, setEmail]l = useState<string>('');
const [mensaje, setMensaje]l = useState<string>('"');

// Manejadores de cambio por input
const handleNombreChange = (e:
ChangeEvent<HTMLInputElement>): void => {
setNombre(e.target.value);

const handleEmailChange = (e:
ChangeEvent<HTMLInputElement>): void => {
setEmail(e.target.value);

const handleMensajeChange = (e:
ChangeEvent<HTMLTextAreaElement>): void => {
setMensaje(e.target.value);

// Manejador del envio del formulario
const handleSubmit = (e: FormEvent<HTMLFormElement>):
void => {
e.preventDefault();

console.log(' M4 Enviando formulario:', {
nombre,
email,
mensaje,

alert(" Gracias por tu mensaje, ${nombre}!");
// Resetear el formulario

setNombre('"');

setEmail('");

setMensaje('');

15

return (
<form onSubmit={handleSubmit}>

<h2>~s Contdctanos</h2>

<input
type="text"
placeholder="Tu nombre"
value={nombre}
onChange={handleNombreChange}
/>

<input
type="email"
placeholder="Tu correo"
value={email}
onChange={handleEmailChange}
/>

<textarea
placeholder="Escribe tu mensaje"
value={mensaje}
onChange={handleMensajeChange}
/>

<button type="submit">Enviar</button>
</form>
)3

}

Importante:
Hay muchas formas de trabajar estos cambios, React
tiene cientos de paquetes para el manejo de
formularios con diferentes aproximaciones.

5de6

{dev/talles}

s de React recomendados

import { CSSProperties } from 'react';

export const InlineBox = () => {
const boxStyle: CSSProperties = {
backgroundColor: 'tomato',
borderRadius: '8px',

1

return <div style={boxStyle}>Caja con
estilo en linea</div>;

13
Tradiciona

Usar la palabra “className” en lugar de class para
referirse a clases de CSS

import './Box.css';

export const CssBox: React.FC = () => {
return <div className="box">Caja con clase

CSS</div>;

b

CSS Modules
import styles from './Box.module.css';
export const CssModuleBox: React.FC = () =>

return <div className={styles.box}>Caja
con CSS Module</div>;
53

sondicionales

El estilo condicional se puede aplicar en diferentes
niveles de componente

interface Props {
tipo: 'warning' | 'info';

export const DynamicStyle = ({ tipo }: Props) => {
const estilo: React.CSSProperties = {
color: tipo === 'warning' ? 'orange' : 'blue’',
padding: '@.5rem’',

’

return <p style={estilo}>Este es un mensaje de tipo
{tipo}</p>;

Cursos y cupones en fernando-herrera.com

https://react-hook-form.com/
https://formik.org/
https://react-hot-toast.com/
https://tanstack.com/query/latest
https://ui.shadcn.com/
https://www.reactbits.dev/
https://zustand-demo.pmnd.rs/
https://reactrouter.com/
https://tanstack.com/router/latest
https://axios-http.com/docs/intro
http://fernando-herrera.com

act
'® ,:J» |_‘.':"»-:.

yracticas
- Componentes pequefios y reutilizables.
+ Nombrado en PascalCase.
- Separar logica del render.
+ Extraer handlers (handleClick, handleChange).
* No usar Hooks dentro de condiciones o loops.
« Crear hooks personalizados.

ario
Los siguientes son términos importantes que se deben
de manejar por todo desarrollador de React.

Es una biblioteca de JavaScript para crear interfaces
de usuario.

Es un lenguaje de marcado que permite escribir una
sintaxis similar a HTML en JavaScript.

Son piezas de codigo que se pueden reutilizar y que se
encargan de una parte de la interfaz de usuario.

Son datos que se pasan a un componente para que
pueda usarlos.

Es un objeto que contiene datos que pueden cambiar
con el tiempo.

Son funciones que permiten a los componentes usar el
estado y otras caracteristicas de React.

Es un objeto que contiene datos que pueden ser
compartidos entre componentes.

Es el proceso de convertir el cédigo en HTML y
mostrarlo en el navegador.

Cuando React vuelve a dibujar un componente porque
cambi6 su estado o props.

{
Es el principio de que los datos no se pueden cambiar,
sino que se deben crear nuevos datos.
Y
Representacién en memoria del DOM real para hacer
actualizaciones eficientes.

6 de 6

{dev/talles}

Funcidn que se ejecuta al ocurrir un evento (como
onClick, onMouseOver).

Elemento de formulario cuyo valor es manejado por el
estado de React.

Elemento de formulario que maneja su propio valor
internamente, accesado con ref.

Identificadores Unicos usados en listas para ayudar a
React a detectar cambios.

Permite agrupar multiples elementos sin afadir un
nodo extra (<> ... </>).

Prop especial que representa los elementos anidados
dentro de un componente.

Funcién que encapsula légica con hooks y puede
reutilizarse entre componentes.

Tradicionalmente el nombre que se da al gestor de
estado propio en React.

Componente que se ejecuta en el servidor (React 18+).

Componente que permite renderizar un fallback
mientras se carga algo (como lazy).

Técnica para cargar componentes o recursos solo
cuando se necesitan.

Optimizacién para evitar renders innecesarios
(React.memo, useMemo).

Significa pasar props de un componente a otro, a
través de muchos niveles intermedios.

Es una herramienta o patrén que te ayuda a controlar y
organizar los datos de la aplicacién, particularmente
util para evitar el Prop drilling.

Cursos y cupones en rrera.com

http://fernando-herrera.com

