
React
Guia de atajos

Commandos Básicos

Crear un nuevo proyecto de cero.

Seguir los pasos que se muestran.

Componentes
Estructura de un componentes.

Importante:
Es obligatorio que cada componente regrese siempre un
único elemento, si se necesita retornar más de uno, se debe
de envolver en un elemento padre para respetar la regla.

Fragmentos

Es un elemento que no es renderizado en el DOM y
sirve para agrupar sin afectar la estructura.

Pro Tip:
La forma abreviada del fragmento es esta, y no requiere
importaciones.

Uso de componentes dentro de otros.

Propiedades de un componente (Props)

Son valores o funciones que se envían al componente,
deben de ser inmutables y permiten la personalización.

Tip:
El código anterior está en TypeScript, ya que las interfaces no existen
en JavaScript, pero nos ayudan a decir cómo luce el objeto Props.

Tip 2:
Presta atención a la desestructuración de argumentos a la función y
nombre de la prop al usar el componente.

Children Prop

Es una forma de mandar elementos hijos a un
componente para renderizarlos en otro.

npm create vite

export function MyComponent() {
 return <h1>Hola Mundo</h1>;
}

export function MyComponent() {
 return (
 <div>
 <h1>Hola Mundo</h1>
 <p>Este es un párrafo</p>
 </div>
);
}

import { Fragment } from 'react';

export function MyComponent() {
 return (
 <Fragment>
 <h1>Hola Mundo</h1>
 <p>Este es un párrafo</p>
 </Fragment>
);
}

export function MyComponent() {
 return (
 <>
 <h1>Hola Mundo</h1>
 <p>Este es un párrafo</p>
 </>
);
}

function MyComponent() {
 return (
 <>
 <h1>Hola Mundo</h1>
 <p>Este es un párrafo</p>
 </>
);
}

function MyApp() {
 return (
 <>
 <MyComponent />
 <MyComponent />
 <MyComponent />
 </>
);
}

interface Props {
 firstName: string;
};

const Greeting = ({ firstName }: Props) => {
 return <h1>Hola, {firstName}!</h1>;
};

// Usando el componente
<Greeting firstName="Fernando" />

type BoxProps = {
 children: React.ReactNode; // 👈 Este es el
contenido que se coloca dentro del componente
};

const Box = ({ children }: BoxProps) => {
 return (
 <div style={{ border: '2px solid blue'}}>
 {/* Renderiza lo que se pase dentro del componente */}
 {children}
 </div>
);
};

export default Box;

 de 1 6 Cursos y cupones en fernando-herrera.com

sssssssssssssssssssssssssss
ssssssssssssssss

http://fernando-herrera.com
https://cursos.devtalles.com/
https://cursos.devtalles.com/

React
Guia de atajos

Para usar el componente “Box” creado anteriormente:

Importante:
Los comentarios dentro del JSX, son expresiones de JavaScript con
su comentario interno, aquí no funciona el <!— —>, porque no es
HTML.

Renderización condicional

En React, no hay directivas para renderizar
condicionalmente o realizar ciclos, dependen
enteramente de expresiones de JavaScript.

Tip:
Hay alternativas para condicionales simples.

Es posible tener retornos prematuros para mantener el
código limpio.

Listas de componentes

Podemos barrer listados en formato de arreglo
utilizando el método .map() de los arreglos y retornar
un JSX en la función callback.

Importante:
Cuando se usa el .map(), siempre debes de colocar el atributo key.

Hooks
Son simples funciones que se definen al inicio del
functional component y permiten acceso a objetos o
funciones dentro del contexto o almacenar estado en
el componente.

const App = () => {
 return (
 <div>
{/* Pasamos elementos como children dentro
del componente Box */}
 <Box>
 <h2>Hola Mundo</h2>
 <p>Este es un párrafo</p>
 </Box>
 </div>
);
};

const isLoggedIn = true;

const LoginMessage = () => {
 return (
 <div>
 {/* Renderizado condicional con ternario */}
 {isLoggedIn ? (
 <h2>Bienvenido de nuevo! 🎉 </h2>
) : (
 <h2>Por favor, inicie sesión. 🔒 </h2>
)}
 </div>
);
};

// Mostrar solo si isLoggedIn es true
{isLoggedIn && <p>Bienvenido de nuevo! 🎉 </p>}

// Mostrar si no está logueado
{!isLoggedIn && <p>Por favor, inicie sesión.</p>}

type Status = 'loading' | 'error' | 'success';

const MultiReturnConditional = () => {
 const status: Status = 'loading';

 // 🔁 Render según el estado
 if (status === 'loading') {
 return <p>Cargando... ⏳ </p>;
 }

 if (status === 'error') {
 return <p>Ups! Algo salió mal ❌ </p>;
 }

 if (status === 'success') {
 return (
 <div>
 <h2>Datos cargados correctamente ✅ </h2>
 <p>Aquí está tu contenido increíble!</p>
 </div>
);
 }

 // Este return es obligatorio por TypeScript,
aunque nunca se debería alcanzar
 return <p>Status no reconocido</p>;
};

const UserList = () => {
 // Lista de usuarios
 const users = [
 { id: 1, name: 'Fernando' },
 { id: 2, name: 'Melissa' },
 { id: 3, name: 'Natalia' },
];

 return (
 <div>
 <h2>Usuarios</h2>

 {users.map((user) => (
 <li key={user.id}>
{/* Siempre se recomienda usar una key
única, como el ID */}
 👤 {user.name}

))}

 </div>
);
};

import { useState } from 'react';

export const MyCounter = () => {
 const [count, setCount] = useState(0);

 return (
 <div>
 <p>Count: {count}</p>
 </div>
);
};

 de 2 6 Cursos y cupones en fernando-herrera.com

sssssssssssssssssssssssssss
ssssssssssssssss

https://react.dev/learn/conditional-rendering
https://react.dev/learn/rendering-lists
http://fernando-herrera.com
https://cursos.devtalles.com/
https://cursos.devtalles.com/

React
Guia de atajos

Listado de los hooks

Un listado de los hooks propios de React

Básicos

Hooks que encontrarás en toda aplicación de React.

Adicionales

Hooks que ofrecen comportamientos adicionales.

Relacionados al DOM

Hooks orientados a información del DOM

Últimos Hooks

Importante:
Existen otros hooks para casos específicos, pueden encontrar el
listado en React Docs.

Reglas de los Hooks

Estas reglas están dadas por React y se deben de
respetar si quieres que tu aplicación funciones como
esperas.

Comando Descripción

useState Maneja un estado local en el
componente.

useEffect Ejecuta efectos secundarios y
limpieza al desmontar el
componente.

useContext Accede al valor alojado en el
contexto. (árbol de componentes)

Comando Descripción

useReducer Alternativa al useState para
lógica compleja.

useRef Referencias mutables que no
causan re-render.

useMemo Memoriza valores para evitar
volverlos a calcular entre re-
renders.

useCallback Memoriza funciones para evitar
recreaciones innecesarias.

useLayoutEffect Similar al useEffect, pero
sincronizado justo después del
render.

useImperativeHandle Expone métodos desde un
componente con forwardRef

Comando Descripción

useDeferredValue Difiere valores para mejorar el
rendimiento entre re-renders.

useTransition Permite renderizar partes del UI
en el background, pueden ser
vistas como actualizaciones no
urgentes.

useInsertionEffect Se ejecuta antes del render
para estilos dinámicos.

Comando Descripción

useFormStatus Lee el estado de un <form>, el
último posteo.

useActionState Actualiza el estado basado en
el resultado de un posteo de
formulario.

useOptimistic Muestra valores optimistas
antes de que una acción sea
resuelta.

Regla Explicación

Siempre llama a los
hooks en el mismo
orden.

No pongas hooks dentro de
condiciones (if), bucles (for,
while) o funciones internas.

Solo usa hooks en
componentes
funcionales o custom
hooks.

No puedes usar hooks dentro
de funciones normales, clases,
condicionales globales.

Los hooks deben
comenzar con use.

Si creas un custom hook,
asegúrate de llamarlo useAlgo,
por ejemplo: useFetch,
useAuth, etc.

Evita efectos
secundarios innecesarios
en useEffect.

No pongas funciones que
modifiquen estado sin incluirlas
en las dependencias, o se
puede crear un bucle infinito.

No modifiques el estado
directamente.

Siempre usa setState (como
setCount(newValue)) en lugar
de modificar el estado actual
directamente.

Separa lógica en hooks
personalizados si se
repite.

Si tienes lógica repetida (por
ejemplo, un useEffect que hace
fetch), considera extraerla en
un custom hook para
reutilizarla.

Efectos del useEffect
deben de ser atómicos.

No crees un efecto gigante,
sepáralo en efectos pequeños
con responsabilidades bien
definidas.

 de 3 6 Cursos y cupones en fernando-herrera.com

sssssssssssssssssssssssssss
ssssssssssssssss

https://cursos.devtalles.com/
https://cursos.devtalles.com/
http://fernando-herrera.com
https://react.dev/reference/react/hooks
https://react.dev/reference/react-dom/hooks/useFormStatus
https://react.dev/reference/react/useActionState
https://react.dev/reference/react/useOptimistic
https://react.dev/reference/react/useDeferredValue
https://react.dev/reference/react/useTransition
https://react.dev/reference/react/useInsertionEffect
https://react.dev/reference/react/useState
https://react.dev/reference/react/useEffect
https://react.dev/reference/react/useContext
https://react.dev/reference/react/useReducer
https://react.dev/reference/react/useRef
https://react.dev/reference/react/useMemo
https://react.dev/reference/react/useCallback
https://react.dev/reference/react/useLayoutEffect
https://react.dev/reference/react/useImperativeHandle

React
Guia de atajos

Custom Hooks - Hooks personalizados

Es posible separar lógica en hooks personalizados
para reutilizarla o bien crear componentes más limpios.

Consumo del hook personalizado useMessage

React API - use

“use” no es un hook

Permite leer un valor de un recurso como una promesa
o contexto, suspendiendo la creación hasta tener una
resolución. Va de la mano del componente Suspense.

Se debe de colocar el <Suspense> component

Componente <Suspense>

Permite desplegar un contenido hasta que sus hijos
terminen de cargar.

Importante:
Si hay un único suspense, el contenido se mostrará hasta que
todos los hijos resuelvan.

Si se desea una aproximación más granular, donde los
hijos se muestran tan pronto terminan, se deben de
colocar múltiples suspense.

React compiler

El compilador de React permite optimizaciones de
código sin necesidad de memorización manual por
parte del desarrollador.

Manejo de eventos

Los eventos de los elementos son los mismos que ya
estamos acostumbrados a usar en el DOM tradicional,
pero los nombres son con camelCase.

// Nombre del archivo: useMessage.ts
import { useState } from 'react';

// Hook que maneja un mensaje y permite
actualizarlo
const useMessage = () => {

 const [message, setMessage] =
useState<string>(‘Hola Mundo!’);

 // Método para cambiar el mensaje
 const updateMessage = (newMessage: string) => {
 setMessage(newMessage);
 };

 return {
 message,
 updateMessage,
 };
};

export default useMessage;

const MessageComponent = () => {
 const { message, updateMessage } = useMessage();

 return (
 <div>
 <h2>{message}</h2>
 <button onClick={() =>
updateMessage(‘Saludos a todos! 🚀 ’)}>
 Change message
 </button>
 </div>
);
};

const MyComponent = () => {

 const message = use(wait(2000)); // Suspende el
componente 2s, luego retorna el mensaje

 return <h2>{message}</h2>;
};

import { Suspense } from 'react';
import MyComponent from './MyComponent';

export default function App() {
 return (
 <Suspense fallback={<p>Loading...</p>}>
 <MyComponent />
 </Suspense>
);

<Suspense fallback={<Loading />}>
 <Albums />
</Suspense>

<Suspense fallback={<BigSpinner />}>
 <Biography />
 <Suspense fallback={<AlbumsGlimmer />}>
 <Panel>
 <Albums />
 </Panel>
 </Suspense>
</Suspense>

import { ChangeEvent, FC, MouseEvent, useState } from
'react';

export const EventExample: FC = () => {
 const [nombre, setNombre] = useState<string>('');

 const handleInputChange = (event:
ChangeEvent<HTMLInputElement>): void => {
 setNombre(event.target.value);
 };

 const handleClick = (event:
MouseEvent<HTMLButtonElement>): void => {
 console.log(event);
 alert(`Hola, ${nombre.trim() !== '' ? nombre :
'invitado'}!`);
 };

 return (
 <>
 <h2>👋 Bienvenido</h2>

 <input
 type="text"
 placeholder="Escribe tu nombre"
 value={nombre}
 onChange={handleInputChange}
 />

 <button onClick={handleClick}>Saludar</button>
 </>
);
};

 de 4 6 Cursos y cupones en fernando-herrera.com

sssssssssssssssssssssssssss
ssssssssssssssss

https://cursos.devtalles.com/
https://cursos.devtalles.com/
https://react.dev/reference/react/use
https://react.dev/reference/react/Suspense
https://react.dev/learn/react-compiler
http://fernando-herrera.com

React
Guia de atajos

Formularios
React no cuenta con componentes propios o
especiales para el manejo de formularios.

Importante:
Hay muchas formas de trabajar estos cambios, React
tiene cientos de paquetes para el manejo de
formularios con diferentes aproximaciones.

Paquetes de React recomendados

• React Hook Form

• Formik

• React Hot Toast

• TanStack Query

• Shadcn/ui

• React Bits

• Zustand

• React Router

• TanStack Router

• Axios

Estilos y CSS
Inline Styles

CSS Tradicional

Usar la palabra “className” en lugar de class para
referirse a clases de CSS

CSS Modules

Estilos condicionales

El estilo condicional se puede aplicar en diferentes
niveles de componente.

import { ChangeEvent, FC, FormEvent, useState } from
'react';

export const ContactForm: FC = () => {
 // Estados tipados
 const [nombre, setNombre] = useState<string>('');
 const [email, setEmail] = useState<string>('');
 const [mensaje, setMensaje] = useState<string>('');

 // Manejadores de cambio por input
 const handleNombreChange = (e:
ChangeEvent<HTMLInputElement>): void => {
 setNombre(e.target.value);
 };

 const handleEmailChange = (e:
ChangeEvent<HTMLInputElement>): void => {
 setEmail(e.target.value);
 };

 const handleMensajeChange = (e:
ChangeEvent<HTMLTextAreaElement>): void => {
 setMensaje(e.target.value);
 };

 // Manejador del envío del formulario
 const handleSubmit = (e: FormEvent<HTMLFormElement>):
void => {
 e.preventDefault();

 console.log('📬 Enviando formulario:', {
 nombre,
 email,
 mensaje,
 });

 alert(`Gracias por tu mensaje, ${nombre}!`);
 // Resetear el formulario
 setNombre('');
 setEmail('');
 setMensaje('');
 };

 return (
 <form onSubmit={handleSubmit}>
 <h2>📨 Contáctanos</h2>

 <input
 type="text"
 placeholder="Tu nombre"
 value={nombre}
 onChange={handleNombreChange}
 />

 <input
 type="email"
 placeholder="Tu correo"
 value={email}
 onChange={handleEmailChange}
 />

 <textarea
 placeholder="Escribe tu mensaje"
 value={mensaje}
 onChange={handleMensajeChange}
 />

 <button type="submit">Enviar</button>
 </form>
);
};

import { CSSProperties } from 'react';

export const InlineBox = () => {
 const boxStyle: CSSProperties = {
 backgroundColor: 'tomato',
 borderRadius: '8px',
 };

 return <div style={boxStyle}>Caja con
estilo en línea</div>;
};

import './Box.css';

export const CssBox: React.FC = () => {
 return <div className="box">Caja con clase
CSS</div>;
};

import styles from './Box.module.css';

export const CssModuleBox: React.FC = () =>
{
 return <div className={styles.box}>Caja
con CSS Module</div>;
};

interface Props {
 tipo: 'warning' | 'info';
}

export const DynamicStyle = ({ tipo }: Props) => {
 const estilo: React.CSSProperties = {
 color: tipo === 'warning' ? 'orange' : 'blue',
 padding: '0.5rem',
 };

 return <p style={estilo}>Este es un mensaje de tipo
{tipo}</p>;
};

 de 5 6 Cursos y cupones en fernando-herrera.com

https://react-hook-form.com/
https://formik.org/
https://react-hot-toast.com/
https://tanstack.com/query/latest
https://ui.shadcn.com/
https://www.reactbits.dev/
https://zustand-demo.pmnd.rs/
https://reactrouter.com/
https://tanstack.com/router/latest
https://axios-http.com/docs/intro
http://fernando-herrera.com

React
Guia de atajos

Buenas prácticas
• Componentes pequeños y reutilizables.

• Nombrado en PascalCase.

• Separar lógica del render.

• Extraer handlers (handleClick, handleChange).

• No usar Hooks dentro de condiciones o loops.

• Crear hooks personalizados.

Glosario
Los siguientes son términos importantes que se deben
de manejar por todo desarrollador de React.

React

Es una biblioteca de JavaScript para crear interfaces
de usuario.

JSX

Es un lenguaje de marcado que permite escribir una
sintaxis similar a HTML en JavaScript.

Componentes

Son piezas de código que se pueden reutilizar y que se
encargan de una parte de la interfaz de usuario.

Props

Son datos que se pasan a un componente para que
pueda usarlos.

Estado

Es un objeto que contiene datos que pueden cambiar
con el tiempo.

Hooks

Son funciones que permiten a los componentes usar el
estado y otras características de React.

Context

Es un objeto que contiene datos que pueden ser
compartidos entre componentes.

Renderizado (Render)

Es el proceso de convertir el código en HTML y
mostrarlo en el navegador.

Re-render

Cuando React vuelve a dibujar un componente porque
cambió su estado o props.

Inmutabilidad

Es el principio de que los datos no se pueden cambiar,
sino que se deben crear nuevos datos.

Virtual DOM

Representación en memoria del DOM real para hacer
actualizaciones eficientes.

Event Handler

Función que se ejecuta al ocurrir un evento (como
onClick, onMouseOver).

Controlled Component

Elemento de formulario cuyo valor es manejado por el
estado de React.

Uncontrolled Component

Elemento de formulario que maneja su propio valor
internamente, accesado con ref.

Keys

Identificadores únicos usados en listas para ayudar a
React a detectar cambios.

Fragment

Permite agrupar múltiples elementos sin añadir un
nodo extra (<> ... </>).

Children

Prop especial que representa los elementos anidados
dentro de un componente.

Custom Hook

Función que encapsula lógica con hooks y puede
reutilizarse entre componentes.

Context API

Tradicionalmente el nombre que se da al gestor de
estado propio en React.

Server Component

Componente que se ejecuta en el servidor (React 18+).

Suspense

Componente que permite renderizar un fallback
mientras se carga algo (como lazy).

Lazy loading

Técnica para cargar componentes o recursos solo
cuando se necesitan.

Memorización

Optimización para evitar renders innecesarios
(React.memo, useMemo).

Prop Drilling

Significa pasar props de un componente a otro, a
través de muchos niveles intermedios.

Gestor de estado - State Manager

Es una herramienta o patrón que te ayuda a controlar y
organizar los datos de la aplicación, particularmente
útil para evitar el Prop drilling.

 de 6 6 Cursos y cupones en fernando-herrera.com

J

k

c

C

l

w

l

r

d

l

r

f

d

p

g

p

h

c

g

p

s

f

b

n

b

http://fernando-herrera.com

